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ABSTRACT

We address the limitations of Gaussian processes for multiclass
classification in the setting where both the number of classes
and the number of observations is very large. We propose a
scalable approximate inference framework by combining the
inducing points method with variational approximations of
the likelihood that have been recently proposed in the litera-
ture. This leads to a tractable lower bound on the marginal
likelihood that decomposes into a sum over both data points
and class labels, and hence, is amenable to doubly stochastic
optimization. To overcome memory issues when dealing with
large datasets, we resort to amortized inference, which coupled
with subsampling over classes reduces the computational and
the memory footprint without a significant loss in performance.
We demonstrate empirically that the proposed algorithm leads
to superior performance in terms of test accuracy, and im-
proved detection of tail labels.

Index Terms— Gaussian process classification, varia-
tional inference, augmented model.

1. INTRODUCTION

Multiclass classification refers to the supervised learning prob-
lem where each instance is labelled with a value chosen from
a discrete set with cardinality K > 2. The goal of multiclass
classification is to learn a mapping from an input space to
the set of labels based on a set of input-output pairs (xn, yn),
where xn ∈ RD and yn ∈ {1, 2, ...,K}. Extreme classifica-
tion (EC) [1, 2] deals with the complexity introduced when
the number of classes K is extremely large so that evaluation
of the likelihood becomes prohibitively expensive using stan-
dard inference techniques. For example, consider the softmax
function which maps K function values to a probability vector,

p(y = c|f) =
exp(fc)∑K
i=1 exp(fi)

, (1)

where f = [f1, . . . , fK ] is a vector of scores for each class for
a given observation. Evaluating Eq. (1) and its gradients scales
linearly with K. For very large data sets, this motivates the
search for sub-linear, efficient, and accurate approximations.

Besides the computational challenges, the statistical chal-
lenges include 1) the average number of observations per class,
N/K is small, 2) sparse data for a subset of classes, and 3)
class imbalance in general. Bayesian methods in the setting
where K is large, have received less attention than standard
multi-class classification. Recently, Bayesian inference algo-
rithms for extreme classification have been proposed for linear
models [3, 4, 5].

While linear models have been shown to scale to very
big data sets, non-linear models such as Gaussian processes
(GPs) [6] can provide better performance by modeling non-
linearities and covariate interactions. In the context of multi-
class classification, imposing GP priors on each score function,
fi for i = 1, . . . ,K, allows modelling complex and non-linear
dependencies in a probabilistic framework. Naive computa-
tions for GPs scale cubically with number of data points N ,
and for K-class GP classification the computation scales as
O(KN3). This makes it computationally non-trivial to apply
GPs to scenarios where K is large.

There has been extensive work on how to reduce the com-
putational cost arising due to large N , including sparse GPs
using the inducing points framework [7, 8]. This reduces the
computational cost per GP to O(BM2 + M3), where M is
the number of inducing points and B is the mini-batch size.

We propose a scalable GP framework for extreme clas-
sification by combining sparse GPs with recently proposed
variational approximations of the likelihood terms. In particu-
lar, we study two different approximations: the One-vs-Each
(OVE) approximation [4] and the augment and reduce (AR)
approximation [5]. This allows us to approximate the likeli-
hood and gradient for each observation using a small subset
of the (K − 1) negative classes such that the resulting cost
will be independent of K. While AR offers better empirical
performance than OVE, it introduces a set of local variational
parameters for each observation. Since the number of varia-
tional parameters scales with N , the memory footprint can be
prohibitively large for large datasets. We resolve this issue us-
ing amortized inference, where a neural network (NN) learns
a mapping from the input space to the variational parameters.
The NN is learnt jointly with the hyperparameters of the GP.
We show that this solution does not degrade the performance
of the AR approximation, but it keeps the memory footprint
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constant with respect to N . In addition, the optimisation prob-
lem is simplified as we tie up local parameters. Overall, this
variational approximation performs better than previous GP
approaches in literature on 4 out of 5 datasets in terms of accu-
racy and coverage. Finally, we share insights into how these
likelihoods are related to each other.

1.1. Related Work

Relevant work on multiclass classification include [9, 10].
[10] use expectation propagation (EP) and an OVE-style bound
that uses the probit function instead of the logistic function.
EP is a fixed point algorithm which is hard to scale when the
number of outcomes is large (in contrast to SVI). It does not
offer a bound on the marginal likelihood, and it can suffer from
convergence issues. Earlier variational approximations using
augmented variables [11, 12] lack scalability. Sampling the
latent function as done in [13] is not scalable for large K.

2. BACKGROUND

2.1. Gaussian processes for classification

GPs provide a principled way of imposing prior distributions
over function spaces. We consider the problem where we have
D-dimensional input vectors xn ∈ RD associated with target
class labels yn ∈ {1, . . . ,K} for n = 1, . . . , N . We model
the latent score function for each class fi ∼ GP (0, k) using
a GP prior with covariance function k(·, ·,θ). Given the set
of input vectors xn, the joint prior distribution on the latent
variables is given as

p(F) =

K∏
i=1

p(f i), p(f i) = N (f i|0,Kff ),

where f i = [fi(x1), . . . , fi(xN )] and [Kff ]nm = k(xn,xm,θ).
We will use fn = [f1(xn), . . . , fK(xn)] to denote the values
of the latent functions for the n’th data point xn. We apply
a link function g : Ik 7→ Rk that maps the probabilities of a
categorical distribution that live in a K dimensional simplex
pn ∈ IK to the fn ∈ RK . The generative process is then

yn ∼ Cat(pn), pn = g−1(fn).

2.2. Inducing points and Stochastic Variational Inference

The coupled training points can be made conditionally inde-
pendent given a set of inducing points z living in the same
space as x [7, 14]. We augment the model with inducing out-
put variables for each class, ui = [f i(z1), . . . , f i(zM )], i.e.
the latent functions evaluated at the inducing points z. The
joint model for (y, f ,u) is then

ui ∼ N (0,Kuu), (2)

f i|ui ∼ N (KfuK
−1
uuu

i,Kff −Qff ), (3)

yn ∼ Cat(g−1(fn)), (4)

where Qff = KfuK
−1
uuKuf . The matrices [Kuu]ij =

k(zi, zj ;θ) and [Kfu]ij = k(xi, zj ;θ) are the covariance ma-
trix between inducing points and the cross-covariance matrix
between the training points and inducing points, respectively.

Based on this generative model, [14] proposed to approxi-
mate the posterior distribution p(F,U|X,y) by

∏
i q(f

i,ui) =∏
i p(f

i|ui)q(ui), where q(ui) is a variational multivariate
Gaussian distribution q(ui) = N (ui|mi,Si). The variational
parameters λ =

{
λi
}K
i=1

, where λi =
{
mi,Si

}
, and the

kernel parameters θ are estimated by maximizing the evidence
lower bound (ELBO)

ELBO(λ,θ,η) =

K∑
i=1

−KL(q(ui)||p(ui))+

N∑
n=1

Eq(fn|λ) log p(yn|fn).

(5)

Since the approximate posterior distribution
∏
i q(f

i|λ) =∏
i

∫
p(f i|ui)q(ui)dui is a multivariate Gaussian, the marginals

q(fn|λ) are analytically available

q(fn) =
∏
i

N (f in|mi
n, (σ

i
n)2), (6)

mi
n = knuK

−1
uum

i, (7)

(σin)2 = knn + knuK
−1
uu (Si −Kuu)K−1uukun. (8)

The key idea is that conditioned on the inducing points, the
training points become decoupled and the bound can be maxi-
mized using stochastic optimization. The ELBO contains two
terms: the first is the sum of KL divergences between the prior
distribution and q(ui) for each class, which can be computed
analytically. The second term is the sum of expectations of log
likelihoods with respect to the vector of latent score function
values fn = [f1, . . . , fK ] at datapoint xn.

3. APPROXIMATE OBSERVATION MODELS

The second term of Eq. (5) involves a set of intractable expecta-
tions. In the binary classification unidimensional expectations
can be approximated using quadrature methods [13]. In the
multiclass scenario the link function g(·) couples all the latent
variables fn, and for large K the high-dimensional integrals
are not feasible with quadrature methods.

In this work, we consider two different approximations
of the likelihood, where the high-dimensional integrals are
replaced with a product of (K − 1) uni-dimensional integrals,
each constituting a function operating on the pairwise dif-
ferences f cin = f cn − f in between the latent function values
belonging to the target class c and one of the remaining classes
i. As a result, we get approximations of Eq. (5) that also



decomposes as a sum over classes

ELBO(λ,θ,η) ≈
K∑
i=1

[
−KL(q(ui)||p(ui))

+

N∑
n=1

Eq(fci
n ) log p(yn|f cin )

]
.

(9)

Since q(f cin ) are univariate Gaussians, the expectations in
Eq. (9) can be efficiently approximated by quadrature. In
addition, this decomposition is amenable to stochastic opti-
mization, making it possible to process only a random subset
of the negative classes Sn ⊆ {1, . . . ,K}\c, where c is the
target class as in Eq. (10). This enables sparse updates

ELBO(λ,θ,η) ≈
N∑
n=1

K − 1

|Sn|
∑
i∈Sn

(
− 1

N
KL

(q(ui)||p(ui)) + Eq(fci
n ) log p(yn|f cin )

) (10)

with constant computational complexity O(1) wrt. K. We
choose |Sn| � K, so that at each optimisation step, we make
fewer updates to parameters reducing number of operations
and memory footprint.

Next we describe the two different approximations for the
likelihood: the One-vs-Each (OVE) approximation, and the
Augment and Reduce (AR) approximation.

3.1. One-vs-Each (OVE)

The OVE approximation is done by replacing the exact prob-
ability by a lower bound based on pairwise probabilities cor-
responding to the event yn = c conditioned on the event that
yn takes one of the two labels yn ∈ {c, k} [4]. The joint log-
likelihood function for the OVE approximation for the n’th
observation is given by (see [4] for more details)

logP (yn = c|fn) = log
1

1 +
∑
i6=c e

fi−fc

≥ log
∏
i 6=c

1

1 + efi−fc
=
∑
i 6=c

log σ(f cin ),

where the inequality follows from the fact that (1 +
∑
i pi) ≤∏

i(1+pi) for 0 ≤ pi ≤ 1. Combining this bound with simple
random sampling of the negative classes and substituting it
into Eq. (10) yields the following approximate lower bound

Love-sgd =

N∑
n=1

K − 1

|Sn|
∑
i∈Sn

[
− 1

N
KL(q(ui)||p(ui))+ (11)

Eq(fci
n ) log σ(f cin )

]
. (12)

The stochastic OVE bound is an an unbiased estimate of the
full OVE bound, but it is biased with respect to the original
objective in Eq. (1) [3].

3.2. Augment and Reduce (AR)

Ruiz et al. [5] introduced a family of variational bounds for
categorical likelihoods under the name of augment and reduce
(A&R). The likelihood p(yn = c|fn) is augmented with a set
of auxiliary variables εn = [ε1n, . . . , ε

K
n ] such that

p(yn = c|fn) =

∫ ∞
−∞

φ(εcn)
∏
i 6=c

Φ(f cn − f in + εin)dεin, (13)

where φ(·),Φ(·) are the PDF and CDF of the auxiliary vari-
ables, respectively. The integral is intractable in general, but
can be approximated with the following variational bound with
respect to a variational distribution q(εn)

log p(yn|fn) ≥Eq(εn)

[
log

p(εn)

q(εn)
+

(K − 1)

|Sn|
∑
i∈Sn

log Φ(εn + f cn − f in)
]
. (14)

Thus, having a tractable CDF is a requirement for this approx-
imation. The choices of the distributions for φ(εn) and q(εn)
determine the form of the likelihood. In this paper, we explore
the following two specific choices: the logit and the softmax
bounds [5].

3.2.1. AR Logit Bound

Choosing φ(εn) to be the standard logistic distribution leads
to the so called AR-logit bound on Eq. (13)

log p(yn|fn) ≥Eq(ε)

[
log

σ(ε)σ(−ε)
q(ε)

+

(K − 1)

|Sn|
∑
i∈Sn

log σ(ε+ f cn − f in)
]
. (15)

While the second term in the bound is intractable, we can use
the reparameterization trick to approximate the expectation.
Substituting this bound into Eq. (10) yields a lower bound
that decomposes over classes. We will refer to this lower
bound as Larlogit. The essence of the AR bound is that the
K GPs, which are independent a priori, become coupled by
the auxiliary variable for each data point. Assuming a Dirac
delta distribution for ε centered at zero, the AR-logit bound
collapses to the OVE bound plus a constant in Eq. (11). This
generalises the OVE bound.

3.2.2. AR Softmax Bound

The equivalent AR bound for the softmax can be derived
by substituting a standard Gumbel distribution for φ(εn) in
Eq. (14). By also choosing a Gumbel for the variational distri-
bution q(εn), the general form of the bound given in Eq. (13)



simplifies to Eq. (16), since the expectation has an analytical
solution

log p(yn|fn) ≥1− log(α)− 1

α

(
1+

(K − 1)

|Sn|
∑
k∈Sn

exp(fkn − f cn)
)
. (16)

Optimizing the variational parameter α ∈ [1,∞) will provide
a tighter bound to the softmax likelihood Eq. (1) than the OVE
and OVE-SGD bounds. Unlike in the previous bounds, the
expectation of Eq. (16) with respect to the marginals q(f cin )
given in Eq. (6) can be computed in closed form

Eq(fn) [log p(yn|fn)] ≥ 1− log(αn)

− 1

αn

(
1 +

(K − 1)

|Sn|
∑
i∈Sn

exp(−mci
n +

(σcin )2

2
)
)
, (17)

where mci
n = Eq(fci

n )

[
f cin
]

and σcin = Varq(fci
n )

[
f cin
]
. Thus,

this method does not require one-dimensional quadratures
like in the ARlogit and OVE bound described above, hence
removing the bias introduced by them [15].

3.3. OPTIMIZATION AND AMORTIZED INFERENCE

We optimize all the bounds introduced in section 3 with respect
to both the variational parameters λ and the kernel parameters
θ using the ADAM optimizer with mini-batching. The OVE
aproximation Eq. (11) is parameter free, but both AR approx-
imations (Eq. (15) and (16)) introduce additional parameters
in the ELBO due to the presence of the local variational distri-
butions. This increases the dimensionality of the optimization
problem, increasing the chance that the optimizer will get
trapped in a local minima or a saddle point. To solve this prob-
lem, [5] proposes a nested loop approach in which they update
the local variational parameters of a batch in a local/inner loop,
re-estimate the ELBO quantity for this batch and then update
the kernel parameters and q(U ;λ) parameters. The approach
still needs to store the O(N) variational parameters. We refer
to this scheme as the Inner-Loop-method (IL).

In contrast, we propose an amortized scheme (AMO) that
reduces the memory footprint by embedding the constraint
that similar data points which lie close to each other in the
input space are likely to have similar auxiliary variables, and
by extension similar variational parameters. We model εn as

εn ∼ q(εn|ηn), ηn = u(xn; λ̃),

where η is the augmented variable parameterised by µ, β in
the ARLOGIT bound and α in the ARSOFT bound. The map
u can be any non-linear map from the input space to the varia-
tional parameters. In this work, we use a neural network with
two hidden layers. The strength of the similarity constraint is
controlled by the complexity and size of the network. Since
the parameters are tied through by sharing of network weights,
the optimisation problem is simplified.

4. EXPERIMENTS AND RESULTS

We evaluate the different methods empirically based on sev-
eral benchmark datasets. For all datasets, we standardize by
subtracting mean and dividing by standard deviations. Bib-
TeX [1], Mediamill, Delicious [16] are all multilabel datasets
which means that each datapoint may have more than one label
assigned to it. We pick the first label for each datapoint as
done in [5, 4]. This lowers the final number of classes for the
last three datasets as given in Table 1. The mean values of
q(U) for each class are initialized randomly from N (0.1, 0.5)
and the covariance matrix was initialised as an identity matrix.

4.1. Performance Metrics

We quantify the performance of the proposed methods with
the classification accuracy and the coverage, motivated by the
extreme learning community [17]. When the distribution of
class labels are severely imbalanced, the classification perfor-
mance for the infrequent classes will not be clearly reflected
in the accuracy metric. It is given as the percentage of classes
in test-set which have a non-zero number of true positives,

Coverage = KTP/K∗ (18)

where K∗ represents the number of classes in the test set and
KTP is the number of classes with at least one true positive.

4.2. Baselines methods

Since most extreme classification methods, such as DIS-
MEC [17] and PPD-Sparse [18], are based on linear models,
we include linear models for both the OVE and AR-soft likeli-
hood as baselines. We also compare our methods against two
multi-class GP methods from the literature: the Robust-Max
(GP-RM) likelihood [19], which was introduced for making
models more robust to outliers, and Villa/Hernandez-Lobato
likelihood (GP-HL), which can be derived in two ways by
either taking the limit of noise parameter to zero in GP-RM, or
by replacing the sigmoid function with a Gaussian CDF in the
Love approximation. The computations are carried out using
the GPFlow implementation [10].

4.3. Results

Table 1 compares the performance of the baseline methods
with the proposed methods. The proposed GP methods per-
form better than linear models for all datasets except for the
Delicious and Mediamill dataset, where the performance is
similar to linear model. The ARSOFT approximation performs
better than the rest on the first three datasets.

The experiments show that the AR methods generally per-
form better than both the non-stochastic and stochastic OVE
methods when the number of negative class samples is fixed.
The difference is more pronounced when K is large and |S| is
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Fig. 1: The plot on the left shows the test set classification accuracy (higher is better) for the MNIST dataset as a function the
sample size for the negative classes. The optimisation scheme is mentioned in parantheses. The plot on the right is a ranking plot
from 1 to 5 (1 being best, 5 being lowest) for the different likelihood approximations and optimisation schemes for all datasets
considered.

Name N K Linear GP-RM, GP-HL OVE |S| OVE-SGD ARSOFT ARLOGIT
OVE ARSOFT AMO AMO

MNIST 60000 10 91.9 92.4 95.4, 95.8 96.8 1 95.9 96.9 96.1
Fashion 60000 10 84.0 84.2 84.8, 86.3 87.8 2 86.5 87.4 86.6
BibTeX 4880 147 35.2 36.1 23.3, 34.2 35.9 30 36.4 39.4 36.8
Mediamill 30993 50 31.5 31.3 37.8, 38.9 35.5 20 35.9 36.0 35.3
Delicious 12920 355 17.7 18.3 15.9, 17.5 16.4 30 16.0 16.4 16.2

Table 1: The third column gives accuracies obtained by a linear model combined with OVE and the best AR likelihood Ruiz2018.
RM and HL refer to GP model with Robust max likelihood and Hernandez-Lobato likelihood, respectively. |S| is the subsample
size. The baseline for GP was obtained using GPFlow, while for the linear models we used code provided by [5].

Name Linear-OVE Linear-ARSOFT GP-RM GP-HL OVE-SGD ARSOFT(AMO) ARLOGIT(AMO)
A C A C A C A C A C A C A C

M 31.5 7.0 31.3 7.2 37.8 12.5 38.9 20.9 35.9 35.0 36.0 42.0 35.3 22.0
M-10D 29.6 4.1 29.7 4.1 34.8 12.5 30.1 5.0 32.2 12.5 33.6 16.2 32.9 16.5
M-1000N 29.7 8.8 29.5 7.4 32.3 8.3 26.0 15.5 29.8 18.7 31.0 24.0 29.9 11.0
M-WMF 20.1 7.3 20.7 7.3 26.0 16.7 23.2 14.0 23.5 17.0 26.4 35.5 24.9 21.5

Table 2: Performance of models on Mediamill with different slices. M is the original Mediamill dataset, M-10D is reduced to
D = 10 dimensions, M-1000N only contains N = 1000 observations, and in M-WMF the most frequent classes have been
removed. A and C denote Accuracy and Coverage, respectively.

relatively small. This is consistent with the behavior observed
by Ruiz et al. [5].

The performance of the amortized AR methods is better
or similar to their non-amortized counterparts (see Figure 1),
while having the advantage of a lower memory footprint. The
Inner-Loop method (IL) does not perform as well for bigger
data sets like BibTex.

The left panel in Figure 1 shows the classification accuracy

for all methods on MNIST dataset when the percentage of neg-
ative class samples is varied from 10% to 90%. As expected,
the general tendency is that classification accuracy increases
when the percentage of negative samples is increased. The
right panel shows the average rank for each method across
all datasets. It is seen that the amortized AR method with
the softmax likelihood is uniformly superior for all sample
percentages. From here onwards, we only show results for



amortized inference since they were mostly superior or similar
to the inner loop inference, and more robust. An explanation
could be that the optimisation in the local step can be challeng-
ing, quite sensitive to variational parameter update schedule
and can get stuck in local minima, when the number of classes
is high.

Table 1 shows that for the full Mediamill dataset, the pro-
posed methods perform slightly worse than the baseline GP-
RM and GP-HL methods. To further analyze this, we tested
the methods on several different slices of the original Medi-
amill dataset. In particular, we manipulated the dimensionality
D, the number of observations N , and the class imbalance
by removing the most frequent classes. This resulted in the
following three new datasets: M-10D, M-1000N, M-WMF,
respectively, shown in Table 2. Both the baseline and proposed
GP have better accuracy and coverage than the linear models
for all variations of Mediamill. The accuracy for all baseline
methods drop substantially when the most frequent classes are
removed from the training set. The proposed methods seem
to have disadvantage in case of high-class imbalance, but the
relative performance gets better when the class imbalance is
reduced. The two proposed methods have better coverage than
the baseline methods for all variations of the Mediamill dataset.
The ARSOFT method produced significantly better coverage
in three out four variations of the Mediamill dataset, while
producing comparable performance to the ARLOGIT method
for the M-10D variant.

For all the data sets used in the experiments, a sample size
of about 20-30% worked well and was sufficient for optimisa-
tion to be stable. The performance then saturated for higher
sample sizes.

5. CONCLUSION

We proposed a scalable framework for extreme classification
using Gaussian processes. The core idea is to combine the ap-
proximate likelihood method called Augment and Reduce with
an amortized variational inference scheme. We applied the
proposed methods to several benchmark datasets and demon-
strated that the proposed method is capable of performing on
par or even better compared to state-of-the-art methods for GP
multi-class classification.
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[9] J Riihimäki, P Jylänki, and A Vehtari, “Nested expec-
tation propagation for Gaussian process classification,”
JMLR, vol. 14, pp. 75–109, 2013.

[10] C Villacampa-Calvo and D Hernández-Lobato, “Scal-
able multi-class Gaussian process classification using
expectation propagation,” in ICML’17, 2017.

[11] M Girolami and S Rogers, “Variational Bayesian multi-
nomial probit regression with Gaussian process priors,”
in Neural Computation 18, pp. 790–1817. 2006.

[12] JH Albert and S Chib, “Bayesian analysis of binary
and polychotomous response data,” JASA, vol. 88, pp.
669–679, 1993.

[13] J Hensman, A Matthews, and Z Ghahramani, “Scalable
Variational Gaussian Process Classification,” in AISTATS
15, 2015, vol. 38 of PMLR, pp. 351–360.

[14] J Hensman, N Fusi, and N Lawrence, “Gaussian pro-
cesses for big data,” in UAI 2013.

[15] AD Saul, Gaussian Process Based Approaches for Sur-
vival Analysis, Ph.D. thesis, 2018.

[16] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Effective and
efficient multilabel classification in domains with large
number of labels,,” in ECML/PKDD 2008 Workshop on
Mining Multidimensional Data, 2008.

[17] R Babbar and B Schölkopf, “Dismec: Distributed sparse
machines for extreme multi-label classification,” in
WSDM’17, 2017, pp. 721–729.

[18] IEH Yen, X Huang, W Dai, P Ravikumar, I Dhillon,
and E Xing, “Ppdsparse: A parallel primal-dual sparse
method for extreme classification,” in SIGKDD’17, 2017.

[19] D Hernández-Lobato, J Miguel Hernández-Lobato, and
P Dupont, “Robust multi-class Gaussian process classifi-
cation,” in NeurIPS, 2011, pp. 280–288.


